



## **MSM MILLING – BIOMASS BOILER (Pt. 3) 6-MONTHLY COMPLIANCE EMISSIONS TESTING REPORT**

**Project ID: 17203**

**18/09/2025**

**Release: RO**

**Prepared For:**

**MSM MILLING - MANILDRA**

**Assured Environmental**



## DOCUMENT CONTROL PAGE

Project Title: MSM MILLING – BIOMASS BOILER (Pt. 3) 6-MONTHLY COMPLIANCE EMISSIONS TESTING REPORT

Project Reference ID: 17203

### Report Prepared by:

Assured Environmental  
Unit 7, 142 Tennyson Memorial Avenue  
Tennyson, QLD, 4105  
ABN: 87 604 851 078

Author: David Arbuckle

### Report Prepared for:

MSM Milling- Manildra  
Dederang Street  
Manildra NSW 2865

Reviewer: Jay Weber

**Table 1: History of Revisions**

| Revision | Date       | Issued to         | Changes         |
|----------|------------|-------------------|-----------------|
| R0       | 18/09/2025 | Kaushal Pathirana | Initial release |

### ACCREDITED FOR COMPLIANCE TO ISO/IEC 17025 (TESTING)

The results of the tests, calibrations and/or measurements included in this document is traceable to Australian/national standards.



### DISCLAIMER

Assured Environmental acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Assured Environmental. Assured Environmental is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Assured Environmental does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Assured Environmental for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Assured Environmental.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Assured Environmental is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

## EXECUTIVE SUMMARY

The objective of this project was to measure stack emissions from the MSM Milling boiler located at the Manildra facility in New South Wales. Measurements were performed on the boiler stack release point, identified as **EPA Identification Number 3 (Biomass Boiler Stack)** in EPL number 13228. The plant was operating under normal conditions at the time of sampling. Further operation details are shown in **Section 2.3** of this report.

All results are presented at normalised conditions (dry, 273K and 101.325 kPa) with applicable corrections for oxygen reference conditions where stated.

**Table 2: Summary of Emissions - Biomass Boiler Stack**

| Release Point Parameter                                                                       | Unit of Measure      | Average      | License Limit | Compliance Status |
|-----------------------------------------------------------------------------------------------|----------------------|--------------|---------------|-------------------|
| Site                                                                                          | -                    | Manildra     | -             | -                 |
| Sample location                                                                               | -                    | Boiler stack | -             | -                 |
| Date of testing                                                                               | dd-mm-yyyy           | 27/08/2025   | -             | -                 |
| Start time                                                                                    | hh:mm                | 12:05        | -             | -                 |
| Finish Time                                                                                   | hh:mm                | 16:27        | -             | -                 |
| Average stack temperature                                                                     | °C                   | 132          | -             | -                 |
| Average stack gas water vapour content                                                        | %-vol                | 11.8         | -             | -                 |
| Average carbon dioxide content                                                                | %-vol                | 10.1         | -             | -                 |
| Average oxygen content                                                                        | %-vol                | 9.54         | -             | -                 |
| Dry gas density                                                                               | kg/Nm <sup>3</sup>   | 1.34         | -             | -                 |
| Dry gas molecular weight                                                                      | g/g-mole             | 30.0         | -             | -                 |
| Sample volume (dry gas meter)                                                                 | Nm <sup>3</sup>      | 0.467        | -             | -                 |
| Exhaust Velocity                                                                              | m/sec                | 9.67         | -             | -                 |
| Dry standard stack flow rate                                                                  | Nm <sup>3</sup> /min | 77.2         | -             | -                 |
| Total Solid Particulate Concentration at 7 % O <sub>2</sub>                                   | mg/Nm <sup>3</sup>   | < 2.35       | 50            | PASS              |
| SO <sub>2</sub> Concentration at 7 % O <sub>2</sub>                                           | mg/Nm <sup>3</sup>   | < 3.58       | -             | -                 |
| NOx Concentration at 7 % O <sub>2</sub>                                                       | mg/Nm <sup>3</sup>   | 159          | 500           | PASS              |
| Cadmium (Cd) Concentration at 7 % O <sub>2</sub>                                              | mg/Nm <sup>3</sup>   | 0.00850      | 0.2           | PASS              |
| Mercury (Hg) Concentration at 7 % O <sub>2</sub>                                              | mg/Nm <sup>3</sup>   | 0.000118     | 0.2           | PASS              |
| Type 1 & 2 substances combined at 7 % O <sub>2</sub>                                          | mg/Nm <sup>3</sup>   | 0.0254       | 1             | PASS              |
| HF Concentration at 7 % O <sub>2</sub>                                                        | mg/Nm <sup>3</sup>   | < 0.23       | -             | -                 |
| HCl Concentration at 7 % O <sub>2</sub>                                                       | mg/Nm <sup>3</sup>   | < 2.30       | 100           | PASS              |
| F Concentration at 7 % O <sub>2</sub>                                                         | mg/Nm <sup>3</sup>   | < 1.18       | 50            | PASS              |
| Chlorine (Cl <sub>2</sub> ) Concentration at 7 % O <sub>2</sub>                               | mg/Nm <sup>3</sup>   | < 2.30       | 200           | PASS              |
| Hydrogen Sulfide Concentration at 7 % O <sub>2</sub>                                          | mg/Nm <sup>3</sup>   | < 2.27       | 5             | PASS              |
| Sulfuric Acid Mist (as 'H <sub>2</sub> SO <sub>4</sub> ') Concentration at 7 % O <sub>2</sub> | mg/Nm <sup>3</sup>   | < 2.05       | 100           | PASS              |
| TVOC Concentration at 7 % O <sub>2</sub>                                                      | mg/Nm <sup>3</sup>   | 0.95         | 40            | PASS              |

Where more than one measurement is performed for the one parameter, the result presented is the average of all measurements. Individual sample results are presented in the calculation of results section at the end of this report.

Based on the comparison presented, the results of the monitoring undertaken has demonstrated compliance with the release limits provided in the site EA for all parameters tested. *The decision rule used is based on values obtained during testing without regard to uncertainty limits.*



---

## TABLE OF CONTENTS

|                                                                   |           |
|-------------------------------------------------------------------|-----------|
| <b>EXECUTIVE SUMMARY .....</b>                                    | <b>3</b>  |
| <b>1    INTRODUCTION .....</b>                                    | <b>5</b>  |
| 1.1    SCOPE OF ASSESSMENT .....                                  | 5         |
| <b>2    METHODOLOGY .....</b>                                     | <b>5</b>  |
| 2.1    SAMPLING METHODOLOGY .....                                 | 5         |
| 2.2    SAMPLING LOCATIONS .....                                   | 7         |
| 2.3    TEST EQUIPMENT .....                                       | 9         |
| <b>3    QUALITY ASSURANCE &amp; QUALITY CONTROL (QA/QC) .....</b> | <b>10</b> |
| 3.1    OVERVIEW .....                                             | 10        |
| 3.2    MEASUREMENT UNCERTAINTY .....                              | 11        |
| <b>4    RESULTS SUMMARY .....</b>                                 | <b>12</b> |
| <b>5    RELEVANT EXTRACT FROM NSW EPA LICENCE NO.13228 .....</b>  | <b>13</b> |
| <b>GLOSSARY OF TERMS .....</b>                                    | <b>15</b> |

## LIST OF TABLES

|                                                                             |    |
|-----------------------------------------------------------------------------|----|
| TABLE 1: HISTORY OF REVISIONS .....                                         | 2  |
| TABLE 2: SUMMARY OF EMISSIONS - BIOMASS BOILER STACK .....                  | 3  |
| TABLE 3: TEST METHODS .....                                                 | 5  |
| TABLE 4: ANALYSIS NOTES .....                                               | 6  |
| TABLE 5: METHOD SPECIFIC NOTES .....                                        | 6  |
| TABLE 6: HEAVY METALS CLASSIFICATION (AS PER NSW AIR SAMPLING MANUAL) ..... | 6  |
| TABLE 7: STACK SAMPLE LOCATION SUMMARY .....                                | 7  |
| TABLE 8: SAMPLE UNCERTAINTY .....                                           | 9  |
| TABLE 9: CALIBRATION RECORDS .....                                          | 9  |
| TABLE 10: SAMPLING DATA QA/QC CHECKLIST .....                               | 10 |
| TABLE 11: LABORATORY DATA QA/QC CHECKLIST .....                             | 10 |
| TABLE 12: SAMPLE UNCERTAINTY .....                                          | 11 |
| TABLE 13: SAMPLE DATA SUMMARY .....                                         | 12 |

## LIST OF FIGURES

|                                                    |    |
|----------------------------------------------------|----|
| FIGURE 1: BOILER STACK AND SAMPLING LOCATION ..... | 8  |
| FIGURE 2: BOILER STACK EXHAUST LOCATION .....      | 8  |
| FIGURE 3: SAMPLE LOCATION SCHEMATIC .....          | 8  |
| FIGURE 4: PERMIT EXTRACT .....                     | 14 |

## 1 INTRODUCTION

### 1.1 Scope of Assessment

Assured Environmental (AE) was appointed by MSM Milling Pty Ltd to sample and analyse source emissions from the licenced biomass boiler at their facility in Manildra, New South Wales. Sampling was conducted by AE on the 27<sup>th</sup> of August 2025.

AE was responsible for the collection and analysis of all samples unless otherwise indicated. All collected samples were recovered and stored in the appropriate manner until their return to the laboratory where the samples were prepared and analysed according to the appropriate methodology.

## 2 METHODOLOGY

### 2.1 Sampling Methodology

All sampling and analysis were carried out in accordance with the listed requirements in Table 3. Any sampling-specific comments have been documented where required.

**Table 3: Test Methods**

| Parameter                                                  | Test Method                   | NSW Test Method | UOM               | Reference Conditions | Oxygen correction |
|------------------------------------------------------------|-------------------------------|-----------------|-------------------|----------------------|-------------------|
| Selection of sample location                               | AS4323.1                      | TM-1            | N/A               | N/A                  | N/A               |
| Temperature & velocity                                     | USEPA Method 2                | TM-2            | °C & m/s          | stack                | N/A               |
| Stack gas density (O <sub>2</sub> & CO <sub>2</sub> )      | USEPA Method 3A               | TM-23           | kg/m <sup>3</sup> | dry, 273K, 1 atm     | N/A               |
| Stack gas moisture content                                 | USEPA Method 4                | TM-22           | %v/v              | dry, 273K, 1 atm     | N/A               |
| Solid particles (Total)                                    | AS 4323.2                     | TM-15           | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Nitrogen oxides (NOx)                                      | USEPA Method 7E               | TM-11           | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Sulfuric acid mist & sulfur trioxide (as SO <sub>3</sub> ) | USEPA Method 8                | TM-3            | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Hydrogen sulfide (H <sub>2</sub> S)                        | USEPA Method 11               | TM-5            | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Fluorine (F <sub>2</sub> )                                 | USEPA Method 13               | TM-9            | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Chlorine (Cl <sub>2</sub> )                                | USEPA Method 26A              | TM-7            | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Hydrogen chloride (HCl)                                    | USEPA Method 26A              | TM-8            | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Type 1 & Type 2 substances in aggregate                    | USEPA Method 29               | TM-12, 13, 14   | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Cadmium (Cd)                                               | USEPA Method 29               | TM-12, 13, 14   | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| Mercury (Hg)                                               | USEPA Method 29               | TM-12, 13, 14   | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |
| TVOCs <sup>a)</sup>                                        | USEPA Method 18 <sup>b)</sup> | TM-34           | mg/m <sup>3</sup> | dry, 273K, 1 atm     | 7%                |

a) Total volatile organic compounds (TVOCs), such as n-propane.

b) USEPA Method 18 tube method.



**Table 4: Analysis Notes**

| Note | Company                       | Work performed      | NATA ID | Report Number |
|------|-------------------------------|---------------------|---------|---------------|
| 1    | Assured Environmental Pty Ltd | Sampling & analysis | 19703   | 17203         |
| 2    | Enviro Lab Services           | Analysis            | 2901    | 389701-[R00]  |

**Table 5: Method Specific Notes**

| Note | Comment                                                                                                                                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | Total heavy metals are reported as sum of all metal's species (type 1 and type 2 substances) found above the limit of detection (positive result), otherwise referred to as the lower bound result. Those metals found below the detection limit are not included in the total figure. Individual metals are presented in the results summary section. |

**Table 6: Heavy Metals Classification (As Per NSW Air Sampling Manual)**

| Type 1 substances                          | Type 2 substances                                                        |
|--------------------------------------------|--------------------------------------------------------------------------|
| Antimony, Arsenic, Cadmium, Lead & Mercury | Beryllium, Chromium, Cobalt, Manganese, Nickel, Selenium, Tin & Vanadium |



## 2.2 Sampling Locations

Stack emissions monitoring was conducted from EPA Identification Point Number 3 in EPL Number 13228. This is a biomass boiler stack release point for the new boilers onsite. The table below provides a summary of compliance of the sampling location with the requirements of AS4323.1 and Figure 1 and Figure 2 provide photographs of the stack and sampling location respectively. A schematic of the release point and sampling location as required by AS4323.1 is provided as Figure 3.

Table 7: Stack Sample Location Summary

| AS4323.1                                        | Sample location                                                            | Boiler stack         |
|-------------------------------------------------|----------------------------------------------------------------------------|----------------------|
|                                                 | Description                                                                | Biomass Boiler Stack |
|                                                 | Stack coordinates                                                          | UTM 56s:             |
|                                                 | Stack Coordinates (North/South) (DD)                                       | -33.18766221098885   |
|                                                 | Stack Coordinates (East/West) (DD)                                         | 148.69411047548365   |
|                                                 | Stack Exit point from ground (m)                                           | 18                   |
|                                                 | Stack Shape                                                                | CIRCULAR             |
| <b>Ideal Sampling Plane Assessment</b>          |                                                                            |                      |
|                                                 | Stack Diameter (m)                                                         | 0.55                 |
|                                                 | Stack Cross Section Area (m <sup>2</sup> )                                 | 0.238                |
|                                                 | Distance Upstream - from disturbance (m)                                   | 15.00                |
|                                                 | Upstream Diameters (D)                                                     | 27.27                |
|                                                 | Distance downstream - from disturbance (m)                                 | 3.50                 |
|                                                 | Downstream diameters (D)                                                   | 6.36                 |
| 4.2.2 Table 1                                   | Meets Requirements AS4323.1 Table 1                                        | Yes                  |
| <b>Non- Ideal Sampling Plane Assessment</b>     |                                                                            |                      |
|                                                 | Assessment required?                                                       | Yes                  |
|                                                 | Total traverse point factors                                               | 1.0                  |
| <b>Non-conforming Sampling Plane Assessment</b> |                                                                            |                      |
| 4.2.2(a)                                        | Gas flow in same direction                                                 | Yes                  |
| 4.2.2(b)                                        | Gas flow steady & evenly distributed (cyclonic or swirl <15°)              | Yes                  |
| 4.2.2(c)                                        | Temperature difference between points <10%, and each point <10% of average | Yes                  |
| 4.2.2(d)                                        | Ratio of highest to lowest differential pressure                           | 1.3                  |
|                                                 | Ratio highest to lowest velocity                                           | 1.1                  |
| 4.2.2(e)                                        | Minimum differential pressure                                              | 5.20                 |
|                                                 | Gas temperature above dewpoint                                             | Yes                  |
| <b>Sampling Plane Type</b>                      |                                                                            |                      |
| 4.2.2, 4.2.3, 4.2.4                             | Sampling plane type                                                        | Ideal                |
| <b>Number of Sample Points Adopted</b>          |                                                                            |                      |
|                                                 | Port size (mm)                                                             | 100                  |
|                                                 | Port Thread Type                                                           | Flange               |
|                                                 | Number of traverses                                                        | 2                    |
|                                                 | Number of points per traverse                                              | 4                    |
|                                                 | Total number of traverse points                                            | 8                    |
|                                                 | Flow & temperature compliance check                                        | Yes                  |



Figure 1: Boiler stack and sampling location

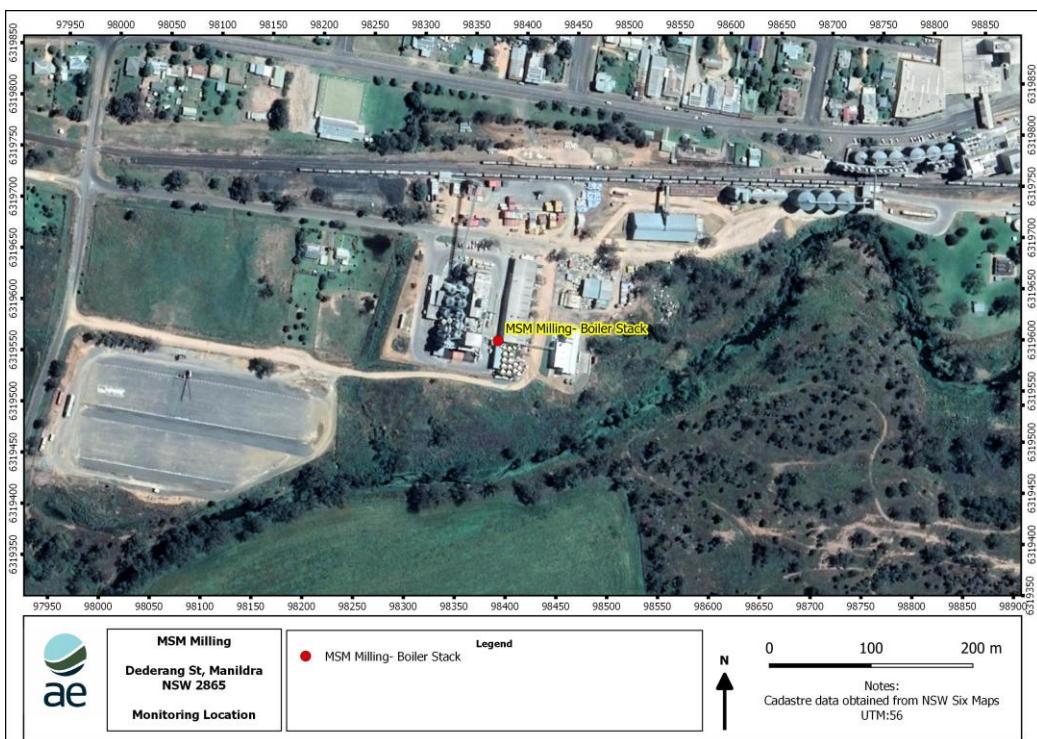



Figure 2: Boiler stack exhaust location

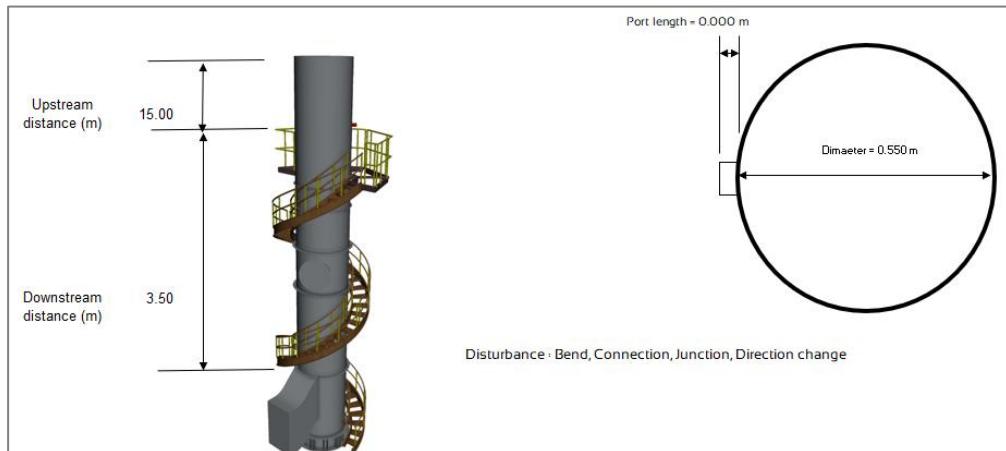



Figure 3: Sample location schematic

## 2.3 Test Equipment

All equipment used during the testing meets or exceeds all relevant performance standards as required by all jurisdictions. Our isokinetic equipment used for this project was from Apex Instruments. Combustion gases were monitored using an MRU Optima 7 flue gas analyser.

**Table 8: Sample Uncertainty**

| Compound               | Range                                                          | Lower Detection Limit | Linearity               |
|------------------------|----------------------------------------------------------------|-----------------------|-------------------------|
| O <sub>2</sub>         | 1 to 25%                                                       | 0.01%                 | +/- 0.8% selected range |
| SO <sub>2</sub>        | 1 to 5000ppm                                                   | 1 ppm                 | +/- 5% selected range   |
| CO                     | 1 to 10,000ppm                                                 | 1 ppm                 | +/- 5% selected range   |
| CO <sub>2</sub>        | 1 to 50%                                                       | 0.01%                 | +/- 1.3% selected range |
| NO                     | 1 to 3,000ppm                                                  | 1 ppm                 | +/- 5% selected range   |
| NO <sub>2</sub>        | 1 to 500ppm                                                    | 1 ppm                 | +/- 5% selected range   |
| Lower Detection Limit  | 2X Noise at 60sec averaging                                    |                       |                         |
| Precision (% of point) | +/- 0.1%, measured with single gases at the span concentration |                       |                         |
| Flow Rate              | ~ 1 litre per minute                                           |                       |                         |
| Accuracy               | 5% of span                                                     |                       |                         |
| Span Drift             | Less than 2% per week (operation time)                         |                       |                         |
| Zero Noise             | 0.5 ppm RMS (60sec averaging time)                             |                       |                         |
| Response Time          | ~40 seconds                                                    |                       |                         |

The sampling equipment was transported to site by AE. Prior to commencement of sampling, the equipment was set up at the base of the stack and used as a temporary site office and laboratory whilst on site. Sampling consoles, analysers, calibration gases and sample recovery equipment were set up with umbilical's connecting these sampling consoles to the probes and impingers in accordance with the methods.

All equipment used in the sampling program was calibrated in accordance with AE's NATA accredited procedures. Table 9 presents a summary of the calibration status of each of the key equipment used in the sampling program.

**Table 9: Calibration Records**

| Equipment          | Description                                                                                                       | Equipment ID | Calibration Due Date | Calibration Information  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|--------------|----------------------|--------------------------|
| Console/ Gas meter | APEX Digital Console                                                                                              | SN937        | 17/01/2026           | (Y)=1.004<br>(DH@)=46.98 |
| Pitot              | 150cm Straight Pitot                                                                                              | SN745        | 6/02/2026            |                          |
| Nozzle             | Glass nozzle set                                                                                                  | SN939        | 5/11/2025            |                          |
| Gas Analyser       | MRU Optima 7 O <sub>2</sub> , CO <sub>2</sub> , CO, NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> (SYD) | SNI056       | 12/01/2026           |                          |
| Thermocouple       | K type Thermocouple (PN109)                                                                                       | TNI171       | 13/01/2027           |                          |
| SKC Pump           | SKC AirCheck Touch Pump                                                                                           | SNI075       | 15/05/2026           |                          |



### 3 QUALITY ASSURANCE & QUALITY CONTROL (QA/QC)

#### 3.1 Overview

Assured Environmental operates within a quality system based upon the requirements of ISO17025. Our quality system defines specific procedures and methodologies to ensure any project undertaken by Assured Environmental is conducted with the highest level of quality given the specific confines of each project. The overall objective of our QA/QC procedures is to representatively sample and accurately analyse components in the gas streams and therefore report valid measurements of emission concentrations.

To ensure representativeness of field work, our quality procedures target:

1. Correct sampling locations
2. Sample time
3. Frequency of samples and
4. Method selection & adherence

To ensure representativeness of lab work, our quality procedures target:

1. Sample preservation
2. Chain of custody (COC)
3. Sample preparation and
4. Analytical techniques

Assured Environmental maintains strict quality assurance throughout all its sampling programs, covering on-site 'field work' and the analytical phase of our projects. Our QA program covers the calibration of all sampling and analytical apparatus where applicable and the use of spikes, replicate sample and reference standards. The test methodologies used for this project are outlined in the methods section of this document. Field test data has been recorded and calculated using direct entry into Microsoft Excel spreadsheets following the procedures of the appropriate test methods. Determination of emission concentrations has been performed using the same Microsoft Excel spreadsheets which are partially supplied as an attachment to this report. More detailed information can be supplied upon request.

QA/QC checks for this project will use validation techniques and criteria appropriate to the type of data and the purpose of the measurement to approve the test report. Records of all data will be maintained. Complete chain of custody (COC) procedures have been followed to document the entire custodial history of each sample. The COC forms also served as a laboratory sheet detailing sample ID and analysis requirements.

**Table 10: Sampling Data QA/QC Checklist**

| <b>Sampling Data QA/QC Checklist</b>                    | <b>Comment</b>                |
|---------------------------------------------------------|-------------------------------|
| Use of appropriate test methods                         | Yes                           |
| 'Normal' operation of the process being tested          | Yes – as instructed by client |
| Use of properly operating and calibrated test equipment | Yes                           |
| Use of high purity reagents                             | Yes                           |
| Performance of leak checks post sample (at least)       | Yes                           |

**Table 11: Laboratory Data QA/QC Checklist**

| <b>Laboratory Data QA/QC Checklist</b>                                 | <b>Comment</b> |
|------------------------------------------------------------------------|----------------|
| Use of appropriate analytical methods                                  | Yes            |
| Use of properly operating and calibrated analytical equipment          | Yes            |
| Precision and accuracy comparable to that achieved in similar projects | Yes            |
| Accurate reporting                                                     | Yes            |

### 3.2 Measurement Uncertainty

There is an inherent uncertainty associated with any scientific measurement, including stack emissions monitoring. The measurement uncertainty can be controlled with strict adherence to the reference methodology along with utilising appropriate calibration standards with corresponding acceptable uncertainty reports.

Many source sampling methods do not outline exact procedures for establishing direct measurement uncertainty. In the absence of a defined procedure, the uncertainty budgets presented are based on estimations using ISO-GUM method.

Each individual source and test may have a unique associated uncertainty assigned, due to factors such as the stack sample location in relation to the positioning requirements of AS4323.1, stack temperature, water vapour content and sample analysis.

The table below outlines the estimated uncertainties associate with reports presented within this report

**Table 12: Sample Uncertainty**

| Parameter                                                | Reference method         | Uncertainty<br>± % | Coverage<br>factor | Confidence<br>coefficient |
|----------------------------------------------------------|--------------------------|--------------------|--------------------|---------------------------|
|                                                          |                          |                    |                    | %                         |
| Velocity                                                 | USEPA Method 2           | 3                  | 2                  | 95                        |
| Temperature                                              | USEPA Method 2           | 3                  | 2                  | 95                        |
| Moisture content                                         | USEPA Method 4           | 4                  | 2                  | 95                        |
| Oxygen                                                   | USEPA Method 3A          | 7                  | 2                  | 95                        |
| Particulate matter                                       | AS 4323.2                | 8                  | 2                  | 95                        |
| Combustion gases                                         | USEPA Method 6C, 7E & 10 | 7                  | 2                  | 95                        |
| VOCs                                                     | USEPA Method 18          | 39                 | 2                  | 95                        |
| Metals                                                   | USEPA Method 29          | 26                 | 2                  | 95                        |
| Hydrogen Chloride                                        | USEPA Method 26A         | 21                 | 2                  | 95                        |
| Fluorine                                                 | USEPA Method 13          | 20                 | 2                  | 95                        |
| Chlorine                                                 | USEPA Method 26A         | 20                 | 2                  | 95                        |
| SO <sub>3</sub> (as H <sub>2</sub> SO <sub>4</sub> mist) | USEPA Method 8           | 31                 | 2                  | 95                        |
| H <sub>2</sub> S                                         | USEPA Method 11          | 30                 | 2                  | 95                        |

## 4 RESULTS SUMMARY

The results of the measurements are presented below along with other pertinent data associated with the tests. Refer to the accompanying spreadsheet for more detail.

Table 13: Sample Data Summary

| Source Data                                                       |                         | MSM Milling                                       |                           | MSM Milling                                       |                         | MSM Milling                                       |                           | MSM Milling                                       |                                     | MSM Milling                                       |                         | MSM Milling                                       |                           |
|-------------------------------------------------------------------|-------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------|-------------------------|---------------------------------------------------|---------------------------|---------------------------------------------------|-------------------------------------|---------------------------------------------------|-------------------------|---------------------------------------------------|---------------------------|
| Client                                                            | MSM Milling             | Client                                            | MSM Milling               | Client                                            | MSM Milling             | Client                                            | MSM Milling               | Client                                            | MSM Milling                         | Client                                            | MSM Milling             | Client                                            | MSM Milling               |
| Site                                                              | Manidra                 | Site                                              | Manidra                   | Site                                              | Manidra                 | Site                                              | Manidra                   | Site                                              | Manidra                             | Site                                              | Manidra                 | Site                                              | Manidra                   |
| Sample Point                                                      | Boiler stack            | Sample Point                                      | Boiler stack              | Sample Point                                      | Boiler stack            | Sample Point                                      | Boiler stack              | Sample Point                                      | Boiler stack                        | Sample Point                                      | Boiler stack            | Sample Point                                      | Boiler stack              |
| Reference Method                                                  | USEPA M8 - ISOkinetic   | Reference Method                                  | USEPA M11 - CONSTANT FLOW | Reference Method                                  | USEPA M13B - ISOkinetic | Reference Method                                  | USEPA M18 - CONSTANT FLOW | Reference Method                                  | USEPA M26 - CONSTANT FLOW           | Reference Method                                  | USEPA M29 - ISOkinetic  | Reference Method                                  | USEPA M18 - CONSTANT FLOW |
| Test Parameters                                                   | SO <sub>x</sub>         | Test Parameters                                   | H <sub>2</sub> S          | Test Parameters                                   | Fl                      | Test Parameters                                   | VOCs                      | Test Parameters                                   | HCl/HF HBr,(NH <sub>3</sub> )Br2,C2 | Test Parameters                                   | Metals                  | Test Parameters                                   | VOCs                      |
| Process conditions                                                | See Process screen shot | Process conditions                                | See Process screen shot   | Process conditions                                | See Process screen shot | Process conditions                                | See Process screen shot   | Process conditions                                | See Process screen shot             | Process conditions                                | See Process screen shot | Process conditions                                | See Process screen shot   |
| <b>Historical Data &amp; Hardware Information - Manual Sample</b> |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Run Start Date                                                    | dd-mm-yyyy              | Run Start Date                                    | dd-mm-yyyy                | Run Start Date                                    | dd-mm-yyyy              | Run Start Date                                    | dd-mm-yyyy                | Run Start Date                                    | dd-mm-yyyy                          | Run Start Date                                    | dd-mm-yyyy              | Run Start Date                                    | dd-mm-yyyy                |
| Project ID                                                        | 17203                   | Project ID                                        | 17203                     | Project ID                                        | 17203                   | Project ID                                        | 17203                     | Project ID                                        | 17203                               | Project ID                                        | 17203                   | Project ID                                        | 17203                     |
| Run ID                                                            | -1                      | Run ID                                            | -2                        | Run ID                                            | -3                      | Run ID                                            | -4                        | Run ID                                            | -5                                  | Run ID                                            | -6                      | Run ID                                            | -11                       |
| Run Start Time                                                    | Ti                      | Run Start Time                                    | Ti                        | Run Start Time                                    | Ti                      | Run Start Time                                    | Ti                        | Run Start Time                                    | Ti                                  | Run Start Time                                    | Ti                      | Run Start Time                                    | Ti                        |
| Run Stop Time                                                     | Tf                      | Run Stop Time                                     | Tf                        | Run Stop Time                                     | Tf                      | Run Stop Time                                     | Tf                        | Run Stop Time                                     | Tf                                  | Run Stop Time                                     | Tf                      | Run Stop Time                                     | Tf                        |
| Positioning compliance check with AS4323.1                        |                         | Positioning compliance check with AS4323.1        |                           | Positioning compliance check with AS4323.1        |                         | Positioning compliance check with AS4323.1        |                           | Positioning compliance check with AS4323.1        |                                     | Positioning compliance check with AS4323.1        |                         | Positioning compliance check with AS4323.1        |                           |
| Flow & temperature compliance check with AS4323.1                 |                         | Flow & temperature compliance check with AS4323.1 |                           | Flow & temperature compliance check with AS4323.1 |                         | Flow & temperature compliance check with AS4323.1 |                           | Flow & temperature compliance check with AS4323.1 |                                     | Flow & temperature compliance check with AS4323.1 |                         | Flow & temperature compliance check with AS4323.1 |                           |
| Traverse pt factors, up, down & trav pts                          |                         | Traverse pt factors, up, down & trav pts          |                           | Traverse pt factors, up, down & trav pts          |                         | Traverse pt factors, up, down & trav pts          |                           | Traverse pt factors, up, down & trav pts          |                                     | Traverse pt factors, up, down & trav pts          |                         | Traverse pt factors, up, down & trav pts          |                           |
| Console Serial Number                                             | SN937                   | Console Serial Number                             | SN937                     | Console Serial Number                             | SN937                   | Console Serial Number                             | SN937                     | Console Serial Number                             | SN937                               | Console Serial Number                             | SN937                   | Console Serial Number                             | SN937                     |
| Meter Calibration Factor                                          | (Y)                     | Meter Calibration Factor                          | (Y)                       | Meter Calibration Factor                          | (Y)                     | Meter Calibration Factor                          | (Y)                       | Meter Calibration Factor                          | (Y)                                 | Meter Calibration Factor                          | (Y)                     | Meter Calibration Factor                          | (Y)                       |
| Orifice Coefficient                                               | (DH@)                   | Orifice Coefficient                               | (DH@)                     | Orifice Coefficient                               | (DH@)                   | Orifice Coefficient                               | (DH@)                     | Orifice Coefficient                               | (DH@)                               | Orifice Coefficient                               | (DH@)                   | Orifice Coefficient                               | (DH@)                     |
| Plot Tube Coefficient                                             | (Cp)                    | Plot Tube Coefficient                             | (Cp)                      | Plot Tube Coefficient                             | (Cp)                    | Plot Tube Coefficient                             | (Cp)                      | Plot Tube Coefficient                             | (Cp)                                | Plot Tube Coefficient                             | (Cp)                    | Plot Tube Coefficient                             | (Cp)                      |
| Actual Nozzle Diameter                                            | (Dn)                    | Actual Nozzle Diameter                            | (Dn)                      | Actual Nozzle Diameter                            | (Dn)                    | Actual Nozzle Diameter                            | (Dn)                      | Actual Nozzle Diameter                            | (Dn)                                | Actual Nozzle Diameter                            | (Dn)                    | Actual Nozzle Diameter                            | (Dn)                      |
| <b>Stack Test Data</b>                                            |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Initial Meter Volume                                              | (Vm)i                   | Initial Meter Volume                              | (Vm)i                     | Initial Meter Volume                              | (Vm)i                   | Initial Meter Volume                              | (Vm)i                     | Initial Meter Volume                              | (Vm)i                               | Initial Meter Volume                              | (Vm)i                   | Initial Meter Volume                              | (Vm)i                     |
| Final Meter Volume                                                | (Vm)f                   | Final Meter Volume                                | (Vm)f                     | Final Meter Volume                                | (Vm)f                   | Final Meter Volume                                | (Vm)f                     | Final Meter Volume                                | (Vm)f                               | Final Meter Volume                                | (Vm)f                   | Final Meter Volume                                | (Vm)f                     |
| Actual Sampling Time                                              | (Q)                     | Actual Sampling Time                              | (Q)                       | Actual Sampling Time                              | (Q)                     | Actual Sampling Time                              | (Q)                       | Actual Sampling Time                              | (Q)                                 | Actual Sampling Time                              | (Q)                     | Actual Sampling Time                              | (Q)                       |
| Average Meter Temperature                                         | (tm)avg                 | Average Meter Temperature                         | (tm)avg                   | Average Meter Temperature                         | (tm)avg                 | Average Meter Temperature                         | (tm)avg                   | Average Meter Temperature                         | (tm)avg                             | Average Meter Temperature                         | (tm)avg                 | Average Meter Temperature                         | (tm)avg                   |
| Average Stack Temperature                                         | (ts)avg                 | Average Stack Temperature                         | (ts)avg                   | Average Stack Temperature                         | (ts)avg                 | Average Stack Temperature                         | (ts)avg                   | Average Stack Temperature                         | (ts)avg                             | Average Stack Temperature                         | (ts)avg                 | Average Stack Temperature                         | (ts)avg                   |
| Barometric Pressure                                               | (Pb)                    | Barometric Pressure                               | (Pb)                      | Barometric Pressure                               | (Pb)                    | Barometric Pressure                               | (Pb)                      | Barometric Pressure                               | (Pb)                                | Barometric Pressure                               | (Pb)                    | Barometric Pressure                               | (Pb)                      |
| Stack Static Pressure                                             | (Pstatic)               | Stack Static Pressure                             | (Pstatic)                 | Stack Static Pressure                             | (Pstatic)               | Stack Static Pressure                             | (Pstatic)                 | Stack Static Pressure                             | (Pstatic)                           | Stack Static Pressure                             | (Pstatic)               | Stack Static Pressure                             | (Pstatic)                 |
| Absolute Stack Pressure                                           | (Ps)                    | Absolute Stack Pressure                           | (Ps)                      | Absolute Stack Pressure                           | (Ps)                    | Absolute Stack Pressure                           | (Ps)                      | Absolute Stack Pressure                           | (Ps)                                | Absolute Stack Pressure                           | (Ps)                    | Absolute Stack Pressure                           | (Ps)                      |
| <b>Sample Volumes</b>                                             |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Actual Meter Volume                                               | (Vm)                    | Actual Meter Volume                               | (Vm)                      | Actual Meter Volume                               | (Vm)                    | Actual Meter Volume                               | (Vm)                      | Actual Meter Volume                               | (Vm)                                | Actual Meter Volume                               | (Vm)                    | Actual Meter Volume                               | (Vm)                      |
| Standard Meter Volume                                             | (Vm)std                 | Standard Meter Volume                             | (Vm)std                   | Standard Meter Volume                             | (Vm)std                 | Standard Meter Volume                             | (Vm)std                   | Standard Meter Volume                             | (Vm)std                             | Standard Meter Volume                             | (Vm)std                 | Standard Meter Volume                             | (Vm)std                   |
| Standard Meter Volume - referenced                                | at 7%O2                 | Standard Meter Volume - referenced                | at 7%O2                   | Standard Meter Volume - referenced                | at 10%O2                | Standard Meter Volume - referenced                | at 12%CO2                 | Standard Meter Volume - referenced                | at 12%CO2                           | Standard Meter Volume - referenced                | at 12%CO2               | Standard Meter Volume - referenced                | at 12%CO2                 |
| <b>Moisture Content Data</b>                                      |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Impingers 1-3 Water Volume Gain                                   | (Vn)                    | Impingers 1-3 Water Volume Gain                   | (Vn)                      | Impingers 1-3 Water Volume Gain                   | (Vn)                    | Impingers 1-3 Water Volume Gain                   | (Vn)                      | Impingers 1-3 Water Volume Gain                   | (Vn)                                | Impingers 1-3 Water Volume Gain                   | (Vn)                    | Impingers 1-3 Water Volume Gain                   | (Vn)                      |
| Impinger 4 Silica Gel Weight Gain                                 | (Wn)                    | Impinger 4 Silica Gel Weight Gain                 | (Wn)                      | Impinger 4 Silica Gel Weight Gain                 | (Wn)                    | Impinger 4 Silica Gel Weight Gain                 | (Wn)                      | Impinger 4 Silica Gel Weight Gain                 | (Wn)                                | Impinger 4 Silica Gel Weight Gain                 | (Wn)                    | Impinger 4 Silica Gel Weight Gain                 | (Wn)                      |
| Total Water Volume Collected                                      | (Vt)                    | Total Water Volume Collected                      | (Vt)                      | Total Water Volume Collected                      | (Vt)                    | Total Water Volume Collected                      | (Vt)                      | Total Water Volume Collected                      | (Vt)                                | Total Water Volume Collected                      | (Vt)                    | Total Water Volume Collected                      | (Vt)                      |
| Water vapour concentration                                        | (Bws)(calc)             | Water vapour concentration                        | (Bws)(calc)               | Water vapour concentration                        | (Bws)(calc)             | Water vapour concentration                        | (Bws)(calc)               | Water vapour concentration                        | (Bws)(calc)                         | Water vapour concentration                        | (Bws)(calc)             | Water vapour concentration                        | (Bws)(calc)               |
| <b>Stack Gas Density Analysis Data</b>                            |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Carbon Dioxide Percentage                                         | (%CO2)                  | Carbon Dioxide Percentage                         | (%CO2)                    | Carbon Dioxide Percentage                         | (%CO2)                  | Carbon Dioxide Percentage                         | (%CO2)                    | Carbon Dioxide Percentage                         | (%CO2)                              | Carbon Dioxide Percentage                         | (%CO2)                  | Carbon Dioxide Percentage                         | (%CO2)                    |
| Oxygen Percentage                                                 | (%O2)                   | Oxygen Percentage                                 | (%O2)                     | Oxygen Percentage                                 | (%O2)                   | Oxygen Percentage                                 | (%O2)                     | Oxygen Percentage                                 | (%O2)                               | Oxygen Percentage                                 | (%O2)                   | Oxygen Percentage                                 | (%O2)                     |
| Carbon Monoxide Percentage                                        | (%CO)                   | Carbon Monoxide Percentage                        | (%CO)                     | Carbon Monoxide Percentage                        | (%CO)                   | Carbon Monoxide Percentage                        | (%CO)                     | Carbon Monoxide Percentage                        | (%CO)                               | Carbon Monoxide Percentage                        | (%CO)                   | Carbon Monoxide Percentage                        | (%CO)                     |
| Nitrogen Percentage                                               | (%N2)                   | Nitrogen Percentage                               | (%N2)                     | Nitrogen Percentage                               | (%N2)                   | Nitrogen Percentage                               | (%N2)                     | Nitrogen Percentage                               | (%N2)                               | Nitrogen Percentage                               | (%N2)                   | Nitrogen Percentage                               | (%N2)                     |
| Dry Gas Molecular Weight                                          | (Md)                    | Dry Gas Molecular Weight                          | (Md)                      | Dry Gas Molecular Weight                          | (Md)                    | Dry Gas Molecular Weight                          | (Md)                      | Dry Gas Molecular Weight                          | (Md)                                | Dry Gas Molecular Weight                          | (Md)                    | Dry Gas Molecular Weight                          | (Md)                      |
| Wet Stack Gas Molecular Weight                                    | (Ms)                    | Wet Stack Gas Molecular Weight                    | (Ms)                      | Wet Stack Gas Molecular Weight                    | (Ms)                    | Wet Stack Gas Molecular Weight                    | (Ms)                      | Wet Stack Gas Molecular Weight                    | (Ms)                                | Wet Stack Gas Molecular Weight                    | (Ms)                    | Wet Stack Gas Molecular Weight                    | (Ms)                      |
| <b>Volumetric Flow Rate Data (at Sample Plane)</b>                |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Average Stack Gas Velocity                                        | (Vs)                    | Average Stack Gas Velocity                        | (Vs)                      | Average Stack Gas Velocity                        | (Vs)                    | Average Stack Gas Velocity                        | (Vs)                      | Average Stack Gas Velocity                        | (Vs)                                | Average Stack Gas Velocity                        | (Vs)                    | Average Stack Gas Velocity                        | (Vs)                      |
| Stack Diameter                                                    | (Ds)                    | Stack Diameter                                    | (Ds)                      | Stack Diameter                                    | (Ds)                    | Stack Diameter                                    | (Ds)                      | Stack Diameter                                    | (Ds)                                | Stack Diameter                                    | (Ds)                    | Stack Diameter                                    | (Ds)                      |
| Stack Cross-Sectional Area                                        | (As)                    | Stack Cross-Sectional Area                        | (As)                      | Stack Cross-Sectional Area                        | (As)                    | Stack Cross-Sectional Area                        | (As)                      | Stack Cross-Sectional Area                        | (As)                                | Stack Cross-Sectional Area                        | (As)                    | Stack Cross-Sectional Area                        | (As)                      |
| Upstream distance (from disturbance)                              | (B)                     | Upstream distance (from disturbance)              | (B)                       | Upstream distance (from disturbance)              | (B)                     | Upstream distance (from disturbance)              | (B)                       | Upstream distance (from disturbance)              | (B)                                 | Upstream distance (from disturbance)              | (B)                     | Upstream distance (from disturbance)              | (B)                       |
| Downstream distance (from disturbance)                            | (A)                     | Downstream distance (from disturbance)            | (A)                       | Downstream distance (from disturbance)            | (A)                     | Downstream distance (from disturbance)            | (A)                       | Downstream distance (from disturbance)            | (A)                                 | Downstream distance (from disturbance)            | (A)                     | Downstream distance (from disturbance)            | (A)                       |
| Actual Stack Flow Rate                                            | (Qaw)                   | Actual Stack Flow Rate                            | (Qaw)                     | Actual Stack Flow Rate                            | (Qaw)                   | Actual Stack Flow Rate                            | (Qaw)                     | Actual Stack Flow Rate                            | (Qaw)                               | Actual Stack Flow Rate                            | (Qaw)                   | Actual Stack Flow Rate                            | (Qaw)                     |
| Wet Standard Stack Flow Rate                                      | (Qsw)                   | Wet Standard Stack Flow Rate                      | (Qsw)                     | Wet Standard Stack Flow Rate                      | (Qsw)                   | Wet Standard Stack Flow Rate                      | (Qsw)                     | Wet Standard Stack Flow Rate                      | (Qsw)                               | Wet Standard Stack Flow Rate                      | (Qsw)                   | Wet Standard Stack Flow Rate                      | (Qsw)                     |
| Dry Standard Stack Flow Rate                                      | (Qsd)                   | Dry Standard Stack Flow Rate                      | (Qsd)                     | Dry Standard Stack Flow Rate                      | (Qsd)                   | Dry Standard Stack Flow Rate                      | (Qsd)                     | Dry Standard Stack Flow Rate                      | (Qsd)                               | Dry Standard Stack Flow Rate                      | (Qsd)                   | Dry Standard Stack Flow Rate                      | (Qsd)                     |
| Percent of isokinetic Rate                                        | (I)                     | Percent of isokinetic Rate                        | (I)                       | Percent of isokinetic Rate                        | (I)                     | Percent of isokinetic Rate                        | (I)                       | Percent of isokinetic Rate                        | (I)                                 | Percent of isokinetic Rate                        | (I)                     | Percent of isokinetic Rate                        | (I)                       |
| <b>Particulate Matter (PM) Concentration</b>                      |                         |                                                   |                           |                                                   |                         |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |
| Total Mass of Particulates                                        | (mn)                    | Total Mass of Particulates                        | (mn)                      | Total Mass of Particulates                        | (mn)                    | Total Mass of Particulates                        | (mn)                      | Total Mass of Particulates                        | (mn)                                | Total Mass of Particulates                        | (mn)                    | Total Mass of Particulates                        | (mn)                      |
| Stack PM Concentration                                            | (cs)                    | Stack PM Concentration                            | (cs)                      | Stack PM Concentration                            | (cs)                    | Stack PM Concentration                            | (cs)                      | Stack PM Concentration                            | (cs)                                | Stack PM Concentration                            | (cs)                    | Stack PM Concentration                            | (cs)                      |
| Stack PM Concentration at 7% O2                                   | (cs)                    | Stack PM Concentration at 7% O2                   | (cs)                      | Stack PM Concentration at 7% O2                   | (cs)                    |                                                   |                           |                                                   |                                     |                                                   |                         |                                                   |                           |



## 5 RELEVANT EXTRACT FROM NSW EPA LICENCE NO.13228

### 3 Limit Conditions

#### L1 Pollution of waters

L1.1 Except as may be expressly provided in any other condition of this licence, the licensee must comply with section 120 of the Protection of the Environment Operations Act 1997.

#### L2 Concentration limits

L2.1 For each monitoring/discharge point or utilisation area specified in the table/s below (by a point number), the concentration of a pollutant discharged at that point, or applied to that area, must not exceed the concentration limits specified for that pollutant in the table.

L2.2 Where a pH quality limit is specified in the table, the specified percentage of samples must be within the specified ranges.

L2.3 To avoid any doubt, this condition does not authorise the pollution of waters by any pollutant other than those specified in the table/s.

L2.4 Air Concentration Limits

#### POINT 3

| Pollutant                                                    | Units of measure           | 100 percentile concentration limit | Reference conditions | Oxygen correction | Averaging period |
|--------------------------------------------------------------|----------------------------|------------------------------------|----------------------|-------------------|------------------|
| Solid Particles                                              | milligrams per cubic metre | 50                                 | dry, 273K, 101.3kPa  | 7%                | 1 hour           |
| Nitrogen Oxides                                              | milligrams per cubic metre | 500                                | dry, 273K, 101.3kPa  | 7%                | 1 hour block     |
| Sulfuric acid mist and sulfur trioxide (as SO <sub>3</sub> ) | milligrams per cubic metre | 100                                | dry, 273K, 101.3kPa  | 7%                | 1 hour           |



## Environment Protection Licence

Licence - 13228

|                                           |                            |     |                     |    |                |
|-------------------------------------------|----------------------------|-----|---------------------|----|----------------|
| Hydrogen Sulfide                          | milligrams per cubic metre | 5   | dry, 273K, 101.3kPa | 7% | 1 hour block   |
| Fluorine                                  | milligrams per cubic metre | 50  | dry, 273K, 101.3kPa | 7% | 1 hour         |
| Chlorine                                  | milligrams per cubic metre | 200 | dry, 273K, 101.3kPa | 7% | 1 hour block   |
| Hydrogen chloride                         | milligrams per cubic metre | 100 | dry, 273K, 101.3kPa | 7% | 1 hour         |
| Type 1 and Type 2 substances in aggregate | milligrams per cubic metre | 1   | dry, 273K, 101.3kPa | 7% | 1 hour         |
| Cadmium                                   | milligrams per cubic metre | 0.2 | dry, 273K, 101.3kPa | 7% | 1 hour         |
| Mercury                                   | milligrams per cubic metre | 0.2 | dry, 273K, 101.3kPa | 7% | 1 hour         |
| Volatile organic compounds                | milligrams per cubic metre | 40  | dry, 273K, 101.3kPa | 7% | 1 hour rolling |

### POINT 10

| Pollutant                  | Units of measure           | 100 percentile concentration limit | Reference conditions | Oxygen correction | Averaging period |
|----------------------------|----------------------------|------------------------------------|----------------------|-------------------|------------------|
| Nitrogen Oxides            | milligrams per cubic metre | 350                                | dry, 273K, 101.3kPa  | 7%                | 1 hour block     |
| Volatile organic compounds | milligrams per cubic metre | 40                                 | dry, 273K, 101.3kPa  | 7%                | 1 hour rolling   |

Note: All plant and equipment must comply with the relevant concentration standards listed in Schedule 2 of the Protection of the Environment Operations (Clean Air) Regulation 2022 if pollutant limits are not specified in the tables above.

Note: The air quality limits listed for point 3 under condition L2.4 will be reviewed following the completion of post-commissioning air monitoring associated with any upgrades to the premises. The review would be intended to ensure emission limits reflect the performance capability of the biomass boiler.

### L2.5 Water and/or Land Concentration Limits

**Figure 4: Permit extract**



## GLOSSARY OF TERMS

| Abbreviation                   | Definition                                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------|
| %v/v                           | percent volume to volume ratio                                                                  |
| <                              | The analytes tested for was not detected; the value stated is the reportable limit of detection |
| AE                             | Assured Environmental                                                                           |
| Am <sup>3</sup>                | Gas volume in cubic metres at measured conditions                                               |
| AS                             | Australian Standard                                                                             |
| BH                             | Back half of sample train (filter holder and impingers) (referred to during sample recovery)    |
| CARB                           | California Air Resources Board methods                                                          |
| CEMS                           | Continuous Emission Monitoring System                                                           |
| CO                             | Carbon monoxide                                                                                 |
| CO <sub>2</sub>                | Carbon dioxide                                                                                  |
| COC                            | Chain of custody                                                                                |
| CSA                            | Cross sectional area                                                                            |
| dd/mm/yy                       | day / month / year                                                                              |
| DECC                           | Department of Environment & Climate Change                                                      |
| DP                             | Discharge point                                                                                 |
| dscm                           | dry standard cubic meters                                                                       |
| ELS                            | Envirolab Services                                                                              |
| EPA                            | Environmental Protection Agency                                                                 |
| EPL                            | Environmental Protection Licence                                                                |
| EWP                            | Elevated work platform                                                                          |
| FH                             | Front half of sample train (probe and filter holder) (referred to during sample recovery)       |
| g                              | Grams                                                                                           |
| g/g mole                       | gram per gram - mole                                                                            |
| H <sub>2</sub> O               | Water                                                                                           |
| H <sub>2</sub> S               | Hydrogen sulphide                                                                               |
| H <sub>2</sub> SO <sub>4</sub> | Sulphuric acid                                                                                  |
| hh:mm                          | hours: minutes                                                                                  |
| ISO17025                       | ISO for the General requirements for the competence of testing and calibration laboratories     |
| kg                             | Kilograms                                                                                       |
| m                              | Metres                                                                                          |
| m/sec                          | metres per second                                                                               |
| m <sup>3</sup>                 | actual gas volume in cubic metres as measured                                                   |
| mbar                           | Millibars                                                                                       |
| MDL                            | Method detection limit                                                                          |
| mg                             | Milligrams (10 <sup>-3</sup> grams)                                                             |
| min                            | Minute                                                                                          |
| mL                             | Millilitres                                                                                     |
| mm                             | Millimetres                                                                                     |
| mmH <sub>2</sub> O             | Millimetres of water                                                                            |
| Mole                           | SI unit that measures the amount of substance                                                   |
| MRU                            | Gas analyser brand                                                                              |
| N/A                            | Not applicable                                                                                  |
| NATA                           | National Association of Testing Authorities                                                     |
| NATO                           | North Atlantic Treaty Organisation                                                              |
| ng                             | Nanograms (10 <sup>-9</sup> grams)                                                              |
| NH <sub>3</sub>                | Ammonia                                                                                         |
| NM                             | Non-methane                                                                                     |
| Nm <sup>3</sup>                | Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa)         |
| NO                             | Nitrogen monoxide                                                                               |
| NO <sub>2</sub>                | Nitrogen dioxide                                                                                |
| NR                             | Not required on this occasion                                                                   |
| NSW                            | New South Wales                                                                                 |
| O <sub>2</sub>                 | Oxygen                                                                                          |
| °C                             | Degrees Celsius                                                                                 |
| OH&S                           | Occupational Health & Safety                                                                    |
| OM                             | Other Method                                                                                    |
| OSHA                           | Occupational Safety and Health Act                                                              |
| ou                             | Odour unit                                                                                      |
| PAH                            | Polycyclic Aromatic Hydrocarbon                                                                 |
| PM                             | Particulate matter (total)                                                                      |
| PM <sub>10</sub>               | Particles with a diameter of 10 micrometres or less                                             |
| PM <sub>2.5</sub>              | Particles with a diameter of 2.5 micrometres or less                                            |
| ppb                            | Parts per billion                                                                               |



| Abbreviation    | Definition                                                                                                                     |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| ppm             | Parts per million                                                                                                              |
| PQL             | Practical quantitation limit                                                                                                   |
| PSD             | Particle size distribution                                                                                                     |
| Q1              | Quarter 1                                                                                                                      |
| Q2              | Quarter 2                                                                                                                      |
| Q3              | Quarter 3                                                                                                                      |
| Q4              | Quarter 4                                                                                                                      |
| QA              | Quality assurance                                                                                                              |
| QC              | Quality control                                                                                                                |
| RMS             | Root mean square                                                                                                               |
| SCAQMD          | South Coast Air Quality Management District                                                                                    |
| sec             | Second                                                                                                                         |
| SI              | Standards international                                                                                                        |
| Sm <sup>3</sup> | Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa) and corrected to a standardised value. |
| SO <sub>2</sub> | Sulphur dioxide                                                                                                                |
| SO <sub>3</sub> | Sulphur trioxide                                                                                                               |
| SSI             | State Significant Infrastructure                                                                                               |
| STP             | Standard temperature and pressure (0°C and 101.3 kPa)                                                                          |
| TM              | Test Method                                                                                                                    |
| TO              | USEPA air toxics method                                                                                                        |
| TWA             | Time weighted average                                                                                                          |
| USEPA           | United States Environmental Protection Authority                                                                               |
| UOM             | Unit of measurement                                                                                                            |
| UTM             | Universal Transverse Mercator                                                                                                  |
| VOC             | Volatile organic compound                                                                                                      |